Boosting in Linear Discriminant Analysis

نویسندگان

  • Marina Skurichina
  • Robert P. W. Duin
چکیده

In recent years, together with bagging [5] and the random subspace method [15], boosting [6] became one of the most popular combining techniques that allows us to improve a weak classifier. Usually, boosting is applied to Decision Trees (DT’s). In this paper, we study boosting in Linear Discriminant Analysis (LDA). Simulation studies, carried out for one artificial data set and two real data sets, show that boosting might be useful in LDA for large training sample sizes while bagging is useful for critical training sample sizes [11]. In this paper, in contrast to a common opinion, we demonstrate that the usefulness of boosting does not depend on the instability of a classifier.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Boosting Kernel Discriminant Analysis and Its Application on Tissue Classification of Gene Expression Data

Kernel discriminant analysis (KDA) is one of the most effective nonlinear techniques for dimensionality reduction and feature extraction. It can be applied to a wide range of applications involving highdimensional data, including images, gene expressions, and text data. This paper develops a new algorithm to further improve the overall performance of KDA by effectively integrating the boosting ...

متن کامل

Boosting Weighted Linear Discriminant Analysis

We propose a novel approach to boosting weighted linear discriminant analysis (LDA) as a weak classifier. Combining Adaboost with LDA allows to select the most relevant features for classification at each boosting iteration, thus benefiting from feature correlation. The advantages of this approach include the use of a smaller number of weak learners to achieve a low error rate, improved classif...

متن کامل

The Role of Combining Rules in Bagging and Boosting

To improve weak classifiers bagging and boosting could be used. These techniques are based on combining classifiers. Usually, a simple majority vote or a weighted majority vote are used as combining rules in bagging and boosting. However, other combining rules such as mean, product and average are possible. In this paper, we study bagging and boosting in Linear Discriminant Analysis (LDA) and t...

متن کامل

A Learning Algorithm of Boosting Kernel Discriminant Analysis for Pattern Recognition

In this paper, we present a new method to enhance classification performance of a multiple classifier system by combining a boosting technique called AdaBoost.M2 and Kernel Discriminant Analysis (KDA). To reduce the dependency between classifier outputs and to speed up the learning, each classifier is trained in a different feature space, which is obtained by applying KDA to a small set of hard...

متن کامل

Large Margin Discriminant Dimensionality Reduction in Prediction Space

In this paper we establish a duality between boosting and SVM, and use this to derive a novel discriminant dimensionality reduction algorithm. In particular, using the multiclass formulation of boosting and SVM we note that both use a combination of mapping and linear classification to maximize the multiclass margin. In SVM this is implemented using a pre-defined mapping (induced by the kernel)...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000